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Abstract
In the following review, we give an introduction to t Hooft’s [9]
1/ expansion. After presenting the main idess and machinery, we
focus on its application to QC0, including some aspects of meson and
baryon phenomenology.

1 Introduction

B far the most powedul tool in cur caloulational arsenal is perturbation the-
ory. As long as we have a Lagrangian and a small coupling, we can determine
deco widths and scattering cross sections to any desired level of accuracy
When no small expansion parametear endsts, we have little recourse for access-
ing interesting, strongly coupled physics. O CD, for excample, features such
important phenomena as chiral svmmetrv-brealing and quark confinement
at strong coupling.

The large vV expansion is bosed on a simple but beautiful ides due to
Hooft: even if an SU{N ) or SO(IV) gauge theory has no small coupling, it is
possible to expand in 1V as W — o0, The crder in 1/ IV of each Feynman
disgram is determined by a topolegical invariant called the Euler character-
istic. This provides a simple tool for determining the relative amplitudes of
soobtenng processes.

While we have other verv sophisticated tocls to investigate the strongly
ooupled regime of QCD (such as lattice gauge theory ), the large V expansion
provides a universally applicable method for understanding SU{V) gauge
theocries — or any theory with some SU(N) symmetry group. Furthermore,
in high enargy phenomendogy, it suoccesstully reproduces such low energy



results as the Zweig rule and suppression of enotics, even though vV =3 for
QCD — which hardly seems “large!”

The large ¥ expansion alsc hos interesting applications in statistical
physics. For example, in systems of ferromagnets close to the critical tem-
pemmbure for a transition between crdered and disordered phases, the Hamil-
tonian of the model often exhibits an SO(3) symmetry. Generalizing the
svstem to d spatial dimensions for large d, and expanding correlators in powe-
ers of 1/d allows us to examine regimes where the Hamiltonian otherwise
lacls a small expansion parameter[13].

More recently, the large IV expansion has plaved a ey role in the ADS /CFT
correspoiidence. The perburbative expansion of string thecry, lile the large
N expansion, is given in terms of the stnng coupling to the power of the
worldshest’s Fuler charactenstic. hMaling the connection to the large vV ex-
pansicn, we see that the closed string coupling is proportional to 1/V: as
N — o0 the string coupling is small and we hawe a weakly coupled string
theory. The spectrum of large IV closad strings is the gluehall spectrum (to
leading crder in 1/V ) and the open string spectrum produces mesons, so we
might be able to use sting methods to study the non-perburtative egime
of QCD. For instance, string theory could show that the meson and glushall
spectra are discrete, which would give definitive proof of confinement [E].
The AdS/CFT correspondence gives us o tool for doing this. It 15 conjec-
tured [3] that wealkly coupled superstring thecry (ie. supergravity) in the
ten-dimensional space 445 = 57 is dual to a strongly coupled N =4 super-
svmmetric Yang-MMills theory living on the boundaryr of the 445, for reasons
outlined above.! Though work on the correspondence is still in its prelimi-
nary stages (and no formal procf exdsts for its accuracy), we mo eventually
be able to use supergravity caloulations in the bulk to learn about the strong
ooupling limit of QCD.

2 Machinery

2.1 Large N in ¢*

Betore confronting the more complicated cose of QCD), we begin with an
O WV )-sv mmetric ¢ theory [2], where countin g factors of Vs is more striaght-

1445, ot fre-dimensional Arki-de Sither space, iz a schibion bo Einsbein's equations
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Figure 1: Diagrams for 6% — aret scattering at vanous crders in YV and

forward. The field ¢ transforms in the fundamental of O(Wi{a =1.. .n),
and has the following Lagrangian density:

.1 1 . 1 A o
L:E-Epﬁﬂcaiﬁﬂc—gmﬁfﬁﬂc—gﬁliﬁ’:ﬁ’:r. |:1'|
As usual, summation ower a is implied, and the coupling A has been
rescaled by the factor of l.,-'"T for later convenience. The &t term gives o
vertex propational to ﬁ(ibie + &y +6_ 280 For the scattering process
¢F " — ¢P¢", the dingrams contributing to leading, one- and two-loop crders
are 0= shown in Fig. 1{a)-(2)? Fig. 1(a) is clearly of arder A/ V. Fig.
lﬂ:-] has two vertices and no summation over the DI:."'C i-vactor index: it is of
order A% /. Fig. 1{c) also has two vertices, but the initial and final legs are
arranged such that we have a “color” loop. That is, there 15 a sum ower the
index ¢, which gives an additional NV, and boosts the crder of the diagram
?Thi= figiite, and all of the subssqiient fgures which display skandard dagrams fxmd
it tmoet teviews and texts on the 1)V expansion, are faken from the Les Houches Lactitres
of AV Manchar [4].




to A% Fig. 1(d) and 1lje) are arder A%V, We now begin to see that the
1/ expansion is orthogonal to the expansion for a small A : diagrams of
equal order in the coupling can howve different orders of V. At each crder
in ¥, wa can find diagrams at essentially all orders in A, In this sense the
1/N expansion at any given order of V is eract in the coupling. * Since we
cannot write down even the entire first term of the 1V expansion in closed
torm, this staktement is not ternbly prackical, but it shows nonetheless that
wa have arrived at a “nonperturbative perturbative expansion.™

To demonstrate that 1/ -.,.-'T i5 indead a valid expansion parmmeter os
N — o0, we must show that there is some upper limit to the order in N of
any given dingram. We introduce a nond vnamical auxdliary feld, o, to make
the calculation more transparent. Mowr

L= %Sﬁm‘ﬁ“ﬁf - %m:m:m: + %a‘: — %a-m‘m‘. (2)
IMobe that inserting the equation of motion for o (o = :—:Tdt-‘:dt-': jinko Eq. (2},
recovers our onginal Lagrangian, [ow, the only interactions are vertices of
one o and twe @'s, which are O(1) in V. The N-dependence of aach disgram
15 now debarmined entirely bv the number of ¢ propagators, each of order
1/ -.,.-'".'"L_', and the number of @ loops, each O(V ). As Coleman [3] suggests, we
can simply strip away all exbernal @ lines, and integrate cut the momenta of
the & loops for an effective action enfirely in terms of . The integrated &
leops give some nonlocal interaction ameong the o felds. In the usual path

inbegral formalism,
gt Sarslel = jH[dm‘]eiErﬂl'”’. (3)

As all terms in the new Lagrangian with o (Eq. (2)) involve quadratic powears
of ¢, with no miang between ¢@'s of different “color” indices, the integral on
the right-hand-side of Eq. (3) separates into a path integral cver a single &
fie. W =1)all raised to the i power. This implies that

SlLFLFl:J:I :': = 'TII 1= 'TIISILFLF(J:I 'q': = 1.I' |:-'LI

We can now characterize the diagrams of the effective o thecry according
to their powers of V. Each of E external o lines adds a factor of 174/ WV, as

iThowugh the shabsiment is esssmbially trivial, nobe that the convetzs = also s # we
exxpand for small ) =ach b=rm iz eack in V.
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does each of [ internal o lines. The ¢ inkegrations that give us the nonlocoal
o vertices add a fackor of V ab each of 17 vertices. Foar connected graphs,
the number of loops, L, is given by L = [ — 17 + 1, which provides an
alternative formulation. The crder of a given diagram is thus VY —F+ENZ =
N1-L-IE-I2  The lowest crder dingram is one with no loops and the minimal
nmumber of external lines. The number of external lines is alwms greater
than the number of internal lines, so the highest possible order in IV for any
connected dingram is +/ V.

2.2 Counting N's in the Vacuum

T analyze the large V behavrior of SU(N) gauge theories, we prooceed as for
¢ theorv: we write down the Lagmngian rescaled with appropriate factors
of IV, and determine o generic formula for the crder of any given dingram.
The complication in the Yang-Mills (Y1) case results from the gauge fields,
which transform in the adjoint (rather than the fundamental) of the gauge
group.  For the ¢t theory, we could only malke cne gauge singlet, @7¢e,
which we associabad with the auxliary field o In QCD), fracing over many
powers of the held strength F,.. gives o gauge singlet, o that technique for
simplifving the Fevnman diagrams of ¢* is no longer practical. Instead, we
talke advantage of % Hooft’s revelation [9] that the topology of a given graph
uniquely defines its order in 1,7V,

As we did for A in the ¢ case, we rescale the coupling fram g to g/ -.,.-'T
in the usual Y Lagrangian, to find a sensible large IV expansion [4]. We
are led to this choice by examination of the beta function, which (befcre the
rescaling of g) has the familiar form

11 200 A
J=#%=_(?x_5xf) 1gx= + O(g"). (5)

For a fixed number Ny of Havas, this 3 is O(V), and doss not givwe a

well-defined limit as [V approadhes infinity. Rescaling g as suggested, we find

11 2N & .
= [ 2RV T L o B
(3 EI)EF+ (g, E

which not only hos o suitable limit .5 WV — @0, but also shows that fermion
leops will be suppressed as 1/1V [4].

4 The atdet of a dizsconiecbed diagram i= simply the prodict of the crdets of its commacted
plmces,



The Lagrangian for an SU(N) gauge theory with N¢ Howors now tales

the form
Ny

1 -
L :—ET:[FP_..F*"'] +Z L'jl::i.ﬂlFDP_— ;. (7
- il
The covadant dedwativwe and the feld strength are defined in terms of the
rescaled coupling:
D, =8, +i- A, and F, =8,4, 8.4, + ~2[4,,4],  (8)
[ - Vil = (it PR e
where the gauge held "'1# = :l'ucf:.

To implement % Hooft™ trick, it will prowe convenient to think of the
gauge helds as NV = V matrices .-l;_..__, having two color indices, @ and b. The
index a transforms in the anti-fundamental, and & in the fundamental. In
terms of the traceless, hermitian generators t-, and the conventional gauge
field A -, we hawe -‘1;1. = A.-(t=)E

From the Lograngian , we rend off the propagators:

{:L'c |:I 'I?;bl::y 'I"‘ — 5:}-5(1 — Y l:g !

whera Sll::..r — v is the usual Dirae propagator. From the ariginal gluon prop-
agator {."‘li':-"-" 147y ":-“ = 5::5-5',._--(1 — v, the propagator for our new matne-
valued gauge helds [4] is:

"

™ wod= y : 1 = 1 - .
(s M2) =D =) 365 - 5780 ) (10)

The coefficient of the abelian gauge field propagator Dp.--(-"-' — y) oomes from
the normalizaticn of the SU (V) generatars. It is easy to check, far instance,
that the second term ensures tracelessness. Eadh fermion propagator is thus
O™, as is the lmding crder of each gluon propagatee®.

We now turn to the Fevnman diagrams. % Hooft [0] recognized that by
writing the gluon fields in the form described abowe, he could treat them
as quark-antiquark pairs. In his “double-line” notstion we droer a line for
each mder: quatk propagators are one line, and gluon propagators are two

®This tmeanz that for meet Purposes e can conisdeat a [-I:."-:I itebead of an 5[-[:'- :I
gatige field, ax the tetm itmetted fo impose faceleshess of the genetabors goes ax 1/V: il=
effect wrill alway=s be suppressad with respact to the kading coder of a grren process.



lines, with srrows poinking in opposite directions as appropriate for a quarl
and an antiquark. This vields diagrams where colar “How is preserved (we
have no wvertices with different numbers of quarls Howing in or out), be
cause all interactions come from a single colar trace in the Lagrangian. Scme
imporbant examples of the notation are gven in Fig.2, Amputating all ex-
ternal legs and considering only wmeuum dingrams for the moment, we can
interpret the colar loops as a senes of polvgons glued together to form a
tero-dimensional surface. The surface is cdented because the direction of the
arrows determines o particular crientation for ench face®. I we consider anly
amputabed (or vacuum-to-wmcuum) graphs, each diagram is analogous to a
compact maonifold. A dingram containing onlv gluons is a manifold without
boundaries (e.g. the sphere 5° i, while a diagram with a quark locp (Fig. 3)
gives a manifold with a boundary (e.g. asphere with a hole in it). Fdlowing
Llanchar [—l_-ll'r'.'e rescale the fields o simplify the power-counting. We define:
.-l = gd/vN and v =+ N, N disappears from the cowmriant derimtive,

W =d+ z.-l the entire V-dependence of the Lagrangian is now mnﬁ.ned
b: an m‘e.m]l hc'i:-:.r::

"-'_‘,

1
L=N ——T:F P4 Zr_' Iizﬂ.*‘D m; |r_- ) (11}
2

]

Each wertex gives a factar of IV, while each propagator—an edge of the
polvhedron—gives 1/ V. Summing over the color index in a loop—a face of the
polvhedron—gives an addibional V. Putting these together, the overall order
of a given dingram is V' =+ (where 17 is the number of vertices, F is the
number of faces, and £ is the number of edges). This particular combination
V—E+4+F =v isa topological invariant known o5 the Euler chamacferisfic
For o generic connected manifold, it is defined in terms of the number of
handles k and boundaries 5 v =2 — 2k — 5. By examining the topology of
each graph, we can determine its crder. [§]

The sphere (with B = 0 and 5 = () has the greatest possible Eular
characteristic: graphs with spherical topology are G'IZ."'EE'I. Such disgrams
oconsist entirely of gluon lines which do not “jump over" each cther. Whils
a glucn line gives the boundaries of foro conbiguous edges in the double-line

BRor an SO gatge theoty we have only obe fimdameital repressnbation, becaiss
th= fimdamental = r=al The fermicts in sich a theoty are Majorana. Thi=s meams that we
wroiild have fo artews on the propagator lines, &0 the doiible-line nokation gives unoriented
manifolde [4].
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Figure 2: Vertices and propagators of an SU(N) gauge theory and their
equivalents in the double-line nctation. Mote,in (2),(d ), (=), that “oclor Hew

has no sourcss or sinls.
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Figure 3: A planar dingram with cne quark loop. It has the topology of a
sphere with one boundary, and thus has Fuler charactenstic v =2 -1 =1,

giving it O V).



notation, a quark line defines an unpaired edge on the manifold: that is,
each closed quark line adds a boundarv, A gluon line whidch crosses owver
ancther line without intemsecting changes the topcdogs b adding a handle.
Polvhedral disgrams in which removal of one face allows us to deform the
sutface to a Hat plane are termed planar diagrams. Thev include vacuum
dingrams consisting of gluons which can even homre multiples three or four-lag
vertices on their interior, o5 long as the gluons do not come out of the page
and the cuter boundary is a full gluon loop. The magic of the 1)V expansion
is that all such vacuum diagrams are O{N7) — each additional Hat glucn line
merely adds a face to the polyhedron, leaving unchanged the fact that it can
be deformed continucusly into o sphere. A planar vacuum diagram which
includes a single fermion loop o= the cutermest edge (Fig. 3) is a sphere
with one boundary, as so is (V). The diagram in Fig. < is not planar
even though we can drowr it on a Hat shest of paper. We can deform it to
have the external gluon loop jumping cver the internal one: it is a diagram
of order 1/V, because it has h = 1 and b = 150 v = —1. (Alternatively,
we can see that it has 4 vertex fackors which give W+, cne color loop giving
W, and 6 internal lines: it is indesd OQ(N-*2+1) = O(1/N).) A diagram
with a fermion loop is only truly planar if the fermion defines the exdernal
boundany,

2.3 Counting N's for Mezons and Glueballs

From the vocuum diagram in Fig. 3, we mayv deduce that the 1/V expan-
slon generates an effective thecrv of mesons. A meson is a oolor singlet
quark-antiquark pair. In the double-line notakion, ench meson arses as a
“puncture” on the boundarr of the dingram — that is, a “source term” on a
quark propagator — which 15 the same as generating a quark-antiquark pair
from the wmeuum. The crder of a disgram depends only on its topology and
on the number of such meson verbices inserted. A planar diagram with teo
meson insertions gives a meson propagator with sslf-energy corrections from
all orders in the coupling g, since adding gluon lines inside the quark line
boundary does not affect the crder of V. For a given topology, we will see
that each additional meson insertion is suppressed bv a fackor of 1) '-,-"T,s:.u
1 -.,.-'T thus serves as an effective coupling constant.

Let us now concretelyv derive the NV-counting rules for more general in-
serbions. We require (1) that these composites of quarls and glucns be
gauge-invarant color singlets, (2) that all terms including quarls be quarlk

g
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Figure 4: An example of a nonplanar diagram. (a) shows one gluon line
“jumping crer” the other, (b) shows an equitalent representation of the same
graph, in which we see that even diagrams which can be drawn in two di-
mensions are only planar if all of their cuter boundary is a quark loop (or all
a gluon loop ). (o) presents the same dingram in double-line notation: we see
that the extra gluon line adds a handls to the topology

bilinears, and (3} that the cclor singlet arise from a smgle oclor trace. The
first two conditions impose the empirical obsermtion of colar confinement,
while the final ones guarantees the accuracy of cur NV-counting. For instance,
we allow opermtors such as L;'L-':, but not |:L_'L' 1#, which has two separate color
traces. The second operator should have twice as many N -factors as the first,
bt would be akifically given the same order in cur counting. The simplest
glucn operatar would have the form F*"FP_

We can produce n-peoint correlatars from a generating functional BV [J].
In the usual path integral formalism [3], we insert scurce terms of the form
NJ;0;, where J; 15 a classical held source and O; 15 a color singlet operator:
excp (W [J]) = [ PoDA expli [ £ 4+ 5, ¥ L0:). The factor IV in the inter-
acticn term gives it the same crder of V as the Lagrangian (Eq. (11} F[J]
represents the sum of all connected vacuum diagrams. An n-point correlation
function is given by

(om0 =3 (L5 \w
{0102, On) =3 (exéJ,-/]” [7]

Jmm]

(12

Jumi]

For opemtors consisting entirely of gluons, the leading terms in the correlator
receive V* from the leading wacuum diagrams in W[J], and N from the

1d



factors of 1/IV on the right-hand-side of Eq. (12}, for a total of N For
operators containing quarls bilinears, the leading order vacuum diagrams
are (), 50 an n-point function of quark bilinears is O{NV'™™). A mixved
correlation funchion must consist of glushall and meson inssrtions in aquarlk
loop wmouum diagram. For n pure gluon operators and m quarlk biliners, such
a cottelator is QNI

We mmwr now use the V- munh.ng rules for glu-:ms and quarls to com-
pute the crder of glueball (= &) and meson (= A scattering amplitudes.

From the counting above, we see that o pure _glu-:.m DpEIﬂ‘bD.I.’ (r creates glue-

balls from the vacuum with unit amplitude: -::'l:_'r er. _,. re D(VET = O10
Each additional glusball suppresses the mphtude b‘- a factor 1/ V. The
meson two-point function has arder O(N'™") = O(1/N). By definibion

the residue of the meson propagator pole must_]:e_i_?[] I, and its location
must give the meson moss: we take instead NV to be cur “physical”
meson opetator. Mow each addifional meson causes a 1 -.,.-'T SUPPreEsion.
For a mived correlation func'ti::.rn of n glusballs and m mesons we hore
,h- Fn.. . G VN, .. -,.-"T".i’n",. ro @(N1=m==7) This is indeed an =f
fEE'h‘.‘E theoryv of mesons and _glueba]ls interacking weakly with a coupling
1y VIV,

As for any held theory, we can expand the Lagrangian to vanous crders of
the small coupling 1/ -.,.-"T: lending crder disgrams are toee-level graphs such
as the one shown in Fig. 3 with the appropriaste number of inserbions on
the boundary. Adding a gluon loop contributes a handle, and thus a factor
of 1/ N, The O[{NZ) and O(V) terms reflect the canfinement of quarks and
gluons into color singlets [4], while all further interactions are suppressed by
tactors of 1/ V. We now deduce that the 1/ IV expansion gives o semiclmsssical
limit of the effective meson theory — we sov “semiclassical” because if we
restore units in the path integral, we find that we are actually expanding in
Ny W, which we know is also o loop expansion.

The full spectrum includes an infinike tower of meson and glueball resc-
nances, which are necessarvy to give the appropriate logarithmic running of
QCD coxrelators. Bach resonance has a narrowr decar T'.'.i.dﬂl, since all vertices
lending to decays are proportional to the coupling 1/+/V. Indeed, we can

now wrike any meson two-point function o= a sum of resonances [4:

[t ataate) = 37 (13)

k
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Figure 5 “Rainbow" dingrams [4] determine the self-ensrgy corrections to
the fermion propagator in the % Heooft medel  Planarity and abssnos of
gluon-gluon interactions guarantes that these are the cnlyv 1PI contobutions

where the my are the masses of the meson rescnances, and the residues Z)
are welghts asscoiabed with each resonance.

3 Applications and Extensions

3.1 The 't Hooft Model

While thesa results are interesting, thev are not easy to apply. QCD in
(3+1) dimensicns still has no closed form expansionin 1/ V. A simpler model
dewloped b %t Hooft [10] serves bo clarify the abstract notions presented so
tar. It 15 enactly sobmble in the large V expansion, taldng V' — oo while
keeping the so-called % Hooff coupling, _qrzl,n'."'f, focad .

We consider NV-oolor QCD in 141 dimensicans with coupling g0 The
meodel displas confinement in the form of a linear potential increasing at
large distances. Rewnting the standard Lagrangian in light-cone coordi-
nates (x* = (7 £ 1Y/ V21 7 simplifies the problam greatly, as malking the
gauge cholce I:.-l"' = 4_ =0 leoves us with o field strength consisting of
a single compenent F,_ = 3, 4_ —J_4, + (ig/ -.,.-"T'I[A_I_,.-l_] = —3_4,.
Eliminating the commmutator of the gluon fields in the fisld strength renders
the theoor essentially abelian: the only gluon werbices are those with one
gluon, one quarlk, and one antiquark. We no longer hare three and four-
gluon vertices. Since we send IV — 00, all contrbuting dingrams are planar:
this forbids gluon lines jumping owver endch cther, so the allowed dingrams are
almost trivial. Because of these simplifications, we can calculate the quarlk
propagator exactly to leading order in 1/ V. The only possible graphs are the

'-“'ﬂ:]:nrh'i.cafﬂmgH=g__=D.1n:]5+_= g_4= 1L
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“mainbows" [10] shown in Fig. 5. We acquire the noncompact quark propaga-
tor by talking the mdius of the fermicn loop boundary of the O V) vacuum
dingram to infinity. A strmightforerard calculation for the self-enargy givwes
T = —g°/mp_, and a quark propagator of the usual form 1/p~ M) [2]. M is
the rencrmalized quark mass, M* =m”+p,Z = m”" —g°/7.F The location of
the poles in the meson propagator determine the moss spectrum. The sim-
plified Fevnman rules vield a propagator given bv the sum shown in Fig. 6.
Appling the Bethe-Salpeter equation for bound stabtes gives an expression
for the meson wovefunction [10):

2 1

. MM
—+

1
.“_E:'(I =

Bz — 'f— dyP [—"] iy, (14)

27 Ja ir—yl®

J —

where p is the meson moss, and r is the light cone momentum fraction
(described below ). Let us see how this equation arses. The spectrum should

essentially be given bv a light cone time-independent Schrodinger equation,
with eigenwmlues p® and sigenstates & In the lightcone formalism, =+ is
the “time" varable and 7 i5 the “posifion.” The operators P, and F_
ate the generators of xF and - translations, respectively. As Coleman [2]
suggests, for two-particle systems in light cone coordinates, we can worl in
an egenspace of F_ with eigenvalue 1; this means that if cne parbicle has
operator P_ given by x, the other has 1 — x with = £ [0,1]. In light cone
coordinates, energy-momentum conservation relates P and F| as P, =
MP/(2P_), so the total energy for the two-particle system is given b

e,

T 11—z

We must add in by hand a potential of form ¢7|p|, which is just the Fourier
transform of the final term in Bq. (14) this is what gives us the confining
potentiall This potential guarantess that the wovefunction ¢ represents o
bound quark pair: because the potentinl is infinite, the spectrum is indeed
discrete. Fq. (14) can then be solved to determine the meson spectrum, as
in [10]. The % Hooft model in the large [V limit exhibits many of the salient
characteristics of 34 1-dimensional QCD, such ns the enclusion of free quarks,
and may give hints for tackling the more difficult (341 +dimensicnal problem.

ElMobe that we st ighote the small vahies of m for which thi= physical quark mams

iz tachyonic. These are artifack= of the th=cty: the mescn mas spechum is otherris=
senimible.

F'I: =2F P =1P

(15




Co)Colo):

Figure 6: The meson tero-paint function in the "t Hooft medel. The shaded
circles refer to the full, corrected quark propaogator. Again, these are the
only possible contrbuting disgrams which preserwe planarity and cbey the
1+ 1-dimensicnal Fevnman rules.

3.2 Meszon Phenomenology

IMany salient empirical teatures of mesons arise naturally in the 1V expan-
sion of QJCD. The simplest among these is Zwerg's rule, the statement that
all processes in which a constituent quark of some hadron begins and ends
in the same hadron are suppressed [11]. The coresponding diagram (Fig. 9)
has two quark loops, and 5015 indeed suppressed by a factor of 1/ V compared
to the one-quark-loop disgrams.

Exctics—bhound stabes consisting of four or more quarks—are also not present
to leading erder in 1/ [2]. A gauge-invariant quark quadrilinesr, for in-
stance, would hae a leading term in its propagator just corresponding to
the propagation of two separate meson states (which, as discussed above, is
(1), A term consisting of a bound state of tvo mesons would be O(N1-7) =
O(1/W ), and does not appear to leading order. (It can arise, of course, at
subsequent orders in 1/ V. )

Further results of the large N meson phencmenclogy, which we will not
discuss in detail, include the realization of dhiral sy mmetr-breaking, which
generates the pions as peeudo-Goldstone bosons. The low-ener gv effective
thecry mov be described in terms of the socalled chimal Lagrangian, which
results from integrating out the fislds of the usual QCD partition function
with source terms for the pseudo-Geoldstones [12]. These source teros are
quarl: bilinears. As we howe seen in our discussion of meson V-ocounting
rules, the correlators of bilinears are given by single-fermion-locp diagrams
(to leading order). The leading crder terms in the effective Lagrangian are
therefore order V., Each additional meson in o correlator brings an extrs
factor of 1) -.,.-"T, 5o interactions of three or more mesons are suitably sup-
pressad. A diagrammatic expansion vields a Lagrangian corrected to vardous
orders of IV, with coefficients found to be in agresment with those determinead
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experimentally [7].

3.3 Barvons

Given the successes of the large IV expansion for reproducing light meson
phenomena, it is natural to wonder if the large NV expansion can offer o
consistent description of barvens, In 1979, Witten [12] proposed a sensible
expansion even for barvons.

PBarrons are color singlets consisting of [V quarls antisymmetnic in color
Spae; Ejl__i_,,qj‘. ..g'*. Since thev are fermicnic objects, the iscepin and
spatial worefunctions together must be symmetric — that is, outside of color
space, barvons lool: lile besons For large IV purposes, barnons are a bundle
of % quark lines, each of different color, propagating together. A naive analy-
sis suggests that our usual expansion is impeossible: the self-energy corrections
to the barvon propagator appear to have mereasmg powers of V. Consider a
oorrection bo the barron self-energy consisting of a gluon exchangs betwean
toro of the constituent quarks — a “tero-body interaction™ Each quarls-gluon
verten: contributes a factor of 1y -.'.-"T, for a total of 1/, Howewer, there
are V(N — 1)/2 such quark pairings pessible, so the sslf-ensrgy receives a
correction of crder V2 /N = V. Similarly, an exchange of two gluons gives a
contribution of order V7, and so on.

The sclution liss in the wmlue of the banon mass [12]. I we sssume that
the barvon is wery hemny, the sum over all diagrams of the tvpe described
abore should vield an quantum-mechanical propagator:

MZ#

e”Mmt = 1 _ Mgt —

+... I:].E'l
= 1+G|:.T'I+DI:.T:'I+..., II]T'I

where in the second line we hawe recorded the self-ener gy contributions from
higher and higher numbers of gluon exchanges. The apparent divergence
need not cause alarme in fact, we have Just found that the bamon mass Mg
i5 CJI:_T I,

Though the double-line diagrammatics used for mesons and gluehalls are
less transparent here, thev are still useful for deriving the N-counting rules
tor barvons. As noted | we think of each barmon as a bundle of V quarl

*This wa=, in fact, the reason that the color quantiim number was proposed in the fitst
place.
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Figure 7: Disconnected two-bedy interactions giving oocrrections to the
barvon propogator. Each connected interaction is treated separately: the
product of the crders of the connected interactions give the order of the
diagram, in this case, O(V - N) = O(N=).

lines, one of each cdor, propagating together  An interaction between the
quarls simply permites indices on the lines. We call an “n-body interackion”
one which mixes the indices of 7 of the constituent quarls — in such a waw
that this mixing is connected (it cannct be reduced to two or more smallar
sets permuting among themsslves). Disconnected inberactions, such as that
shown in Fig. 7, contobute at the crder which is the produd of the con-
stituent connectad interactions. To leading order, these n-body interactions
oorres pond to the connectad single-quark-loop vacuum diagrams we analyzed
abore, The n quarks appear as n puncbures in the boundary loop — except
that now we must “twist"[4] cne of the quark lines to have all of the quarls
propagating in the same direction. Fig. 5 shows that though the diagram
shown appears nonplanar (we have a gluon line jumping over another gluon
line), the discrepancy arises from the twist. If we Hip the bottom quark line
in Fig. 8, we find o conventional planar locop dingram, where the external
quark boundary stretched cut to inhnityr, so that it locls like two separate
constituent quarl lines. Therefore, the topology of the wmouum loop which
gives us the proper power of WV has not changed.

HMote that interactions of all n values are equally imporbant. From the
wmcuum loop, we see that an n-bedy interaction is O N1~} since each loop
we cub through and label with a definite index falies aws a color index
sum, and thus a powar of . However, there are O(V™) ways of picking cut

19e peglect Asvor for the moment.
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Figure 8: A two-body interaction which appears nonplanar, though it actu-
allv is. [Mote that robating the botbom line by 7 about an aods lving in the
page, but perpendicular to the quark line gives a planar vacuum diagram,
since the two gluon lines are now parallal.

which of the IV quarls participate in the interaction: owerall, any n-body
interaction is (V) — independent of n.

The N-counting rules and the quantum mechanical, many-body descrip-
ticn of the barmon also extend to interactions between barwons and other
oclor singlet operabors. For instance, the process B+ &g — B (where the
barvon absorbs some hypothetical meson) corresponds to the matnx element
{B|gq|E). The meson operator can be placed on any of the V quark lines in
the barvon, so this process is at most O(V ). (If cancellations cocur among
the N contrbutions, the order may be lower. | Genarally, an n-bed v operator
produces an amplitude of at mest O(N™) [4].

We can deduce the meson-barvon coupling from this meakriv element,
which is O{N). The amplitude for a fermicn bilinear to create a meson is
'-.-"T Mote that we must consider physiazl mesons to Aind the actual cir-
dar of the coupling. We found that such bilinsars are sealed te WAL to
give (1) meson propagators. The fermicns in the bilinear, r_-':, hawe been
mescaled from the phisical quarls in the criginal Langrangian: o = -.,.-'".I?r_-'.
In terms of physical quarks, then, the expectation value {:IE| -.,-’T."-ﬂﬁ';:n =
-...-"T{:IE|SL-|E;;- = {Blou|B}/+N. The coupling between the meson and
barvon, then, must be at most IQJI:-.,.-"T I. Sov we add ancther meson, to give
meson-barvon scattering. For conservafion of energy, both mesons must be
inserted on the same quark line {at lending crder in 1/V) — this gives a mul-
tiplicity of V. Each meson, as described, comes with o factor of 1) -.,.-'T - 50
overall the scattering amplitude is (1), As was mentioned in the case of
glueball-meson and pure J.'.I'.EEDILE amplitudes, each additional mesons further
suppresses the process b 174/ V.

Finally, we can consider banwon-banon scattering at fived velocities. The

17



barvons are extremely heory, so they basically have s clossical momentum
p= Mgv. The scatbering process will involve the interaction of at least cne
quark from each V-quark barvonic bundle. The dhoice of quarls within the
bundle contributes o combinatoric factor of V°. To couple quarls of different
oolors we nead a gluon, which contributes 1y VN (I no gluon is ewchanged
the combinatoric facteor is ust V: either woy we find an OV ) process. ) Since
the amplitude is O[N), and the barvon mass is OV ), baryons essentially
exchibit classical seatbering as IV grows large [12].

Though we will not discuss this interesting point at length here, we note
that the large [V expansion hos vielded an effective theory in which mesons
are fundamental (unit mass) fields with a small coupling g,, = 1/ -.,.-'T The
barvon maosses go os inverse powers of the coupling, which suggests that
thev might appear as sditonic objects. Such an effective meson theor: was
proposed by Slorme [3] and developed further bne Adkdins, IMappi, and Withken
[1], who indeed posited that barvons arise as solitons of the picn fields in the
Slvrme medel.

3.1 The noorelativistic quark model

To define the morphadogy of the barmon spectrum, we think of the bamwon
a5 a nonrelativistic bound state of heasv quarks. The Hamiltonian of the

svstem is [17)

H:.'"f.".i'+z B ZI (x:—x; |+— Z Vi —x;— x4 .. (18)

dmd Jll-_;lll-\.ln.

where each of the r; denctes the positicn of a quark, and M is the quark
msss. By the counting conducted above, we see that eadh term is O V). We
assume that all of the quarls mere in an average background p:tentm.l [12].

The groundstate wavefunction of the banon is wglzy .. x40 = Hﬁb.;.li
with ¢y the groundstate of an individual quark in the baclcground J;jltentml.
Let us first review the non-relafivistic quark modsl for QCD, with thres
light quark Havors (u,d,s)and V = 3. The spin, Havor and spatial wavefune-
ticns together must be symmefric since the color wavefunction is antisvime
metric. Each of the thres Haor quarls can have spin £1/ 2, the groundstate
of the barvon must transform as a completely symmetrized product of three

fundamentals of SU(E) (since 8 = 2. 3, with 2 from spin and 3 from the
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approcdmate 3-Hovor symmetry ). The three spins can add up to either 3,2
or 1/2. The 5. = 3/2 spin wawefunction is svmmetric {all spin up}, so the
Havors must also exhibit a syvmmetric state: for instance, ddd, or sss, or
(wud + udu + duw)/ -.,.-"E, ebc. These constitute the “decuplet barvons” (the
A%, T, 2% and 27 []. Empidcal chservation dictates that spin 12
barvons having all three quarls of the same Horor do not adss in noture.
Let us then consider barvons, like the proton, in which only two quarls are
identical. The teo identical Horor quarls must hore o totally symmetric spin
worefunction. For 7 =172, the wawetunction of the proton is

weced

ﬁ[i [TL =Ll = L[] +evelic permutaticns (19

where the cvclic parmuitations guarantes that the Haror + spin woefunchion
is completely svmmetnc. This gives six of the octet barvons. The remaining
ones have all three quarls different, such as the T and the A

The defining properties of the barveons arse naturally in this medel [4].
The net magnetic moment is given by lulpa'g, where p s is the magnstic morment
of a given Hovor. For instance, the proton hos mognetic moment 4p,/3 —
paf 3 =—3pa.

Anocther parameter, the axial coupling, is given relativistically by {p|g+*wg|p)
(where = acts on the Havor SU(3)). The nonrelativistic version of this is the
expectation value g'a” g, which give +1for d | and u [,and —1fa u | and
d|. Asimple calculation [4] determines that the proton, wud, has g. = 5/3.
We derive this be applving the axdal current given abowe to the probon wore-
functicn.

Meowr consider the equivalent analvsis for V colors. Wechoose WV = 2m4-1
(m integer) and again take three Havors. Requiring total antisymmetry
of the coor worefunchion vislds a svmmetric total spin 4+ Haver 4 space
wovefunction. We assume that the quarks are all in the spatial wavefunc-
tion groundstate, so it remnins only to construct o syvmmetric Haowor +
spin wavefunction, which is an N-index svmmetric tensor of SU(E). Un-
der SU(2)apin # SU(3) fiaver, the tensor of SU(6) decomposss inko represen-
tations labeled b the J-value with 7 =12 0 =372, .0 = N/2. Let us
tocus specifically on the 1/ % proton, which we dehne to have spin and iscspin
1/2 [5]. This implies that it has (m 4+ 1) u’ and m d’s, each of which must
torm symmetrc spin worefunctions among themselves. As a result, the uw’s
contribute a tobal of J = (m +1)/2 and the d's J = m;2 — together, they
must form total 7 = 12, Using these results we can compute g4 a5 above,
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by applving o7 = EI:..TFHJ - ..F'rij'l. The Wigner-Eclmrt thecrem and some
calculation[S] give g4 = (W 4+ 2)/3, which indeed reduces to 5/3 for IV = 3.
The axial coupling is thus OV ) — this is the result we would expect from cur
large N counting rules for the matrix element in the barvon of single-quarl
operator.

4 Conclusion

While % Hooft’s large 'V expansion is used for phenomenclogical predickion
with some hesitation, it is nonetheless an important tod for studyving QCD
as well as applications in statistical physics and the more escteric AJS/CFT
oorrespondence.  The expansion is so important because it is fundamen-
tally nonperturbative. We expand arcund a different vacuum from the usual
zerc-coupling, free theory vacuum: because our expansion parameter is 1,V
instead of the coupling, g, we can unocowver much wmluable informaticn about
the structure of strongly coupled physics of all fipes.
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